If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=54
We move all terms to the left:
8x^2-(54)=0
a = 8; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·8·(-54)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*8}=\frac{0-24\sqrt{3}}{16} =-\frac{24\sqrt{3}}{16} =-\frac{3\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*8}=\frac{0+24\sqrt{3}}{16} =\frac{24\sqrt{3}}{16} =\frac{3\sqrt{3}}{2} $
| 4x+10=15x-12 | | 6(x+1)+2x=9.5x | | (x+40)+(2x+5)=180 | | 4X2–36x+81=0 | | 16x^2+13x-23=0 | | 4^9x=4^3x+18 | | 7e-27=R^2 | | 7·x+3=38 | | 3·x+4=34 | | 7x+1.5=-6x-13.7 | | x^2-90x+648=0 | | (5x-69=111+x) | | 36=40–x | | X^3+2x-5x-6=0 | | 2/9-(n/81)=0 | | b/2=8. | | m=-4(3m-7)+11 | | 5x+11+7x-15=8x+14-5x | | 3x+7=8x–13 | | 7x-2.0=4x-5.3 | | 6×(b+4)=36 | | 8x+1.6=6x=2.8 | | 8x+1.6=6x | | 7n-50=41 | | 11x^2-32x-112=0 | | 104h-84=1372 | | 207k+11=1460 | | 91m+13=559 | | 120f-48=432 | | 21s-31=242 | | x/75=7/15 | | 14n+19=131 |